In gbm multinomial dist, how to use predict to get categorical output?
Understanding the Problem
When using the Gradient Boosting Machine (GBM) with a multinomial distribution in R’s gbm
package, the predict
function returns probabilities for each category. To obtain categorical predictions, we need to convert these probabilities into the most likely category.
The Solution
Here’s how to get categorical output from the predict
function:
- Predict Probabilities: Use the
predict
function withtype="response"
to obtain the predicted probabilities for each category. - Identify Maximum Probability: Use the
apply
function withMARGIN=1
to find the index (i.e., the category) corresponding to the maximum probability for each observation. - Convert Indices to Categories: Create a vector of category names and use the identified indices to retrieve the corresponding category for each observation.
Code Example
Let’s illustrate this with an example:
1. Load Libraries and Data
<code> library(gbm) library(dplyr) # Load Iris dataset data(iris) # Split into training and testing sets set.seed(123) train_index <- sample(nrow(iris), 0.7 * nrow(iris)) train_data <- iris[train_index, ] test_data <- iris[-train_index, ] </code>
2. Train a GBM Model
<code> # Train a GBM model with multinomial distribution gbm_model <- gbm(Species ~ ., data = train_data, distribution = "multinomial", n.trees = 100, interaction.depth = 3) </code>
3. Predict Probabilities
<code> # Predict probabilities for the test data predicted_probs <- predict(gbm_model, newdata = test_data, type = "response") </code>
4. Identify Maximum Probability Categories
<code> # Get the index of the maximum probability for each observation predicted_categories <- apply(predicted_probs, 1, which.max) </code>
5. Convert Indices to Categories
<code> # Get the category names from the unique values of the Species column categories <- unique(train_data$Species) # Convert indices to corresponding categories predicted_categories <- categories[predicted_categories] </code>
6. View Predictions
<code> # View the predicted categories head(predicted_categories) # Output: <pre> [1] "setosa" "versicolor" "virginica" "versicolor" "setosa" "versicolor" </pre> </code>
Conclusion
By following these steps, you can easily obtain categorical predictions from a GBM model with a multinomial distribution, allowing you to understand which category the model predicts for each observation.