TensorFlow: Adding Class to Pre-trained Inception Model & Outputting Full Image Hierarchy

TensorFlow: Enhancing Image Classification with Inception

Introduction

This article delves into the process of expanding the capabilities of a pre-trained Inception model in TensorFlow. We’ll demonstrate how to add a new class to the model’s existing classification repertoire and obtain the complete image hierarchy for predictions.

Setting the Stage

1. Importing Libraries

  import tensorflow as tf from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.models import Model from tensorflow.keras.preprocessing import image from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np 

2. Loading the Pre-trained Inception Model

  base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(299, 299, 3)) 

Adding a New Class

1. Freezing Base Layers

  for layer in base_model.layers: layer.trainable = False 

2. Building the Classifier

  x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) x = Dense(512, activation='relu')(x) predictions = Dense(1, activation='sigmoid')(x) model = Model(inputs=base_model.input, outputs=predictions) 

3. Compiling the Model

  model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

Data Preparation

1. Image Data Generator

  train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) test_datagen = ImageDataGenerator(rescale=1./255) 

2. Loading Training and Validation Data

  train_set = train_datagen.flow_from_directory( 'path/to/train', target_size=(299, 299), batch_size=32, class_mode='binary' ) test_set = test_datagen.flow_from_directory( 'path/to/test', target_size=(299, 299), batch_size=32, class_mode='binary' ) 

Training the Model

  model.fit_generator( train_set, epochs=10, validation_data=test_set ) 

Outputting the Full Image Hierarchy

1. Retrieving Inception’s Output

  inception_output = Model(inputs=base_model.input, outputs=base_model.output) 

2. Making Predictions

  image_path = 'path/to/image.jpg' img = image.load_img(image_path, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # Get Inception's output inception_features = inception_output.predict(x) # Get model prediction prediction = model.predict(x) 

3. Accessing Inception’s Output Layers

  inception_layers = ['mixed_7a', 'mixed_8a', 'mixed_9a', 'mixed_10a'] layer_outputs = {} for layer_name in inception_layers: layer_output = base_model.get_layer(layer_name).output layer_outputs[layer_name] = layer_output inception_hierarchy = Model(inputs=base_model.input, outputs=layer_outputs) # Get layer outputs hierarchy_output = inception_hierarchy.predict(x) # Displaying the Inception Hierarchy Output for layer_name, output in hierarchy_output.items(): print(f"Layer: {layer_name}") print(output[0].shape) # Displaying or processing the output for each layer # ... 

Results and Interpretation

The output for each Inception layer provides a hierarchical representation of the image. By analyzing these features, you can gain insights into the image content at different levels of abstraction, enhancing your understanding of the image’s characteristics and facilitating further analysis or downstream tasks.

Conclusion

By leveraging a pre-trained Inception model, we’ve successfully demonstrated how to incorporate new classes and extract the complete image hierarchy. This process empowers us to make accurate predictions while simultaneously gaining deeper understanding of the image’s content, leading to richer analysis and application possibilities.

Leave a Reply

Your email address will not be published. Required fields are marked *